Posts

Zepp Swing Experiment: Here’s a Quick Way to Fix a Flat Bat at Landing (and WHY!) 

Question: How Does a Flat Bat at Landing Effect Bat Speed, Ball Exit Speed, & Time To Impact?

Using the Zepp (Labs) Baseball app and Pocket Radar Ball Coach, I wanted to employ the Scientific Method to analyze how a hitter’s “Flat Bat at Landing”, or toe touch,  adds or takes away from key swing performance metrics including Bat Speed at Impact, Time To Impact, Attack Angle, and Ball Exit Speeds.

Let me define what I mean by ‘Flat Barrel’ versus a ‘Vertical Barrel’…

  • A ‘Flat Barrel’ at landing is anything less than a 30-degree angle (like Cargo in the above video as an example),
  • A ‘Vertical Barrel’ at landing is anything more than a 30-degree angle.

Now that we’ve defined the parameters, let’s look at the…

 

Background Research

Notice where the “dot” is drawn on the two static images left side, and where it’s drawn on the two dynamic images right side. Photo courtesy: GymSmartsCommunity.com

My background research is more experiential, rather than academic.

I have hitters do a mini-experiment by holding the bat in their bottom hand, laid flat (parallel to ground) over their back shoulder.  And then ask them to hold the bat, using the same hand, but vertical.  I then ask them which bat position is heavier/lighter?  Of course they say the vertical bat is lighter.  I then ask WHY?  And I get a few different answers…

What is the answer?  Because we’re not adding or taking weight away from the bat by doing this…

It has to do with center of mass of the bat in relation to the hitter’s.  A ‘Flat Bat at Landing’ pushes its center of mass behind the hitter’s. A human’s center of mass is generally around the belly button.  To find the bat’s center of mass you can balance it between your thumb and forefinger.

I’ve also observed when adjusting a hitter’s ‘Flat Bat at Landing’ to a more ‘Vertical Bat at Landing’, there’s a bump in Ball Exit Speed, which I measure at the beginning (before instruction is given) and end of a hitting lesson.  My hitter’s also share they feel quicker to impact, have a little more ‘pop’, and that it’s easier getting the ball in the air.

It’s also interesting to note that I see quite a bit of early barring of the front arm when the hitter lands with a flat barrel.  I also see the hitter “wrapping the bat” around their head.  In my opinion this is a compensation to manipulate the shifted center mass of the bat from behind the hitter.

CLICK HERE to watch this video on how to fix a ‘Flat Bat at Impact’.

 

Hypothesis

Carlos Gonzalez & Cody Bellinger Illustrating Flat versus Vertical Bat at Landing

Look at the difference in bat angle at landing between Carlos Gonzalez (left) – “Flat” and Cody Bellinger (right) – “Vertical”. Just because a Big Leaguer does it doesn’t mean it’s effective or optimized. Oftentimes they succeed despite ineffective mechanics. Photos courtesy: MLB.com

In support of the Background Research above, I’m hallucinating that we’ll see a bump in Bat and Ball Exit Speeds, in addition to a reduction in Time To Impact.  I also think that we’ll see a more positive move in the barrel’s Attack Angle.

 

Flat Versus Vertical Bat at Landing Experiment

Equipment Used:

Setup:

  • Yellow dimple ball feedback markers to keep starting footwork the same = bat length…I used two yellow dimple ball markers to make my stance setup consistent.  One was placed inside my back foot, close to the plate.  The other was placed one bat’s length ahead of the back marker.
  • Backspin tee was set one baseball’s length behind the front feedback marker, and tee height was about mid-thigh
  • We stayed as consistent as we could with keeping the ball height and depth the same for most swings.
  • I broke each swing down into a couple steps: 1) Get to landing, 2) Pause for 2-secs, and 3) Swing.  The reason for this was to control the bat either flat or vertical at landing.
  • The two tests in the swing experiment were counter-balanced.  Which consisted of eight blocks of 25-swings done in the following order ABBA BAAB.  ‘Flat Bat at Landing’ was letter ‘A’, and ‘Vertical Bat at Landing’ was letter ‘B’.  200 total swings were completed in the experiment, 100 per test.  Counter-balancing helps remove the “getting tired” and “warm up” factors.
  • The objective of ‘Front Facing Swings’ was to start the ‘belt buckle’ pointing at the pitcher, and to minimize pelvic movement.
  • Experiment Day-1 on 7/5 we completed 150 total swings (75 ‘Flat Barrel at Landing’ & 75 ‘Vertical Barrel at Landing’).  Experiment Day-2 on 7/10 we completed 50 swings (25 ‘Flat Bat at Landing’ & 25 ‘Vertical Bat at Landing’).
  • We had to break the 200 total swings into two days, with the second day coming 1 week later, because of time constraints.

 

Data Collected (Zepp Baseball App & Ball Exit Speed Readings):

‘Flat Bat Swings’ Days 1 & 2 side by side…

Flat Barrel at Landing swing averages of the averages: 76-MPH Bat Speed at Impact, 26.5-MPH Hand Speed Max, .209 Time To Impact, -32* Bat Vertical Angle at Impact, & 8.5* Attack Angle.

‘Vertical Barrel Swings’ Days 1 & 2 side by side…

Vertical Barrel at Landing swing averages of the averages: 76-MPH Bat Speed at Impact, 27-MPH Hand Speed Max, .206 Time To Impact, 30.5* Bat Vertical Angle at Impact, & 8.5* Attack Angle.

CLICK HERE for the Ball Exit Speed Google document.  The findings?

  •  Flat Barrel at Landing AVERAGE Ball Exit Speed = 79.01-MPH
  • Vertical Barrel at Landing AVERAGE Ball Exit Speed = 81.08-MPH
  • Difference = 2.01-MPH Ball Exit Speed bump with more Vertical Barrel at Landing

 

Data Analysis & Conclusion

Zepp data analysis comparing the averages of averages:

  • We saw NO change to Bat Speed at Impact between the two swings,
  • We saw a 0.5-MPH boost to Hand Speed Max when holding a ‘Vertical Bat at Landing’,
  • We saw a .003 second reduction in Time To Impact when holding a ‘Vertical Bat at Landing’,
  • We saw a +1.5-degree increase to Bat Vertical Angle at Impact when holding a ‘Vertical Bat at Landing’,
  • We saw NO change to the Attack Angle between the two swings, and
  • We saw a 2.01-MPH increase in Ball Exit Speed when holding a ‘Vertical Bat at Landing’.

Based on the above Data Analysis it looks like my Hypothesis was proved right when it came to a boost in Hand Speed Max and Ball Exit Speed, and decrease in Time To Impact, but wrong when it came to Bat Speed at Impact and Attack Angle.  I think the increase in Ball Exit Speed can be attributed to the decrease in Time To Impact.

When we see ineffective movement at the Big League level, we have to understand that these high level hitters are succeeding despite ineffective movements, not because of them.

Question: Do More Expensive Bats Increase Bat & Ball Exit Speeds?

 

Baseball Batting Practice: Mizuno Bat Model Zepp Swing Experiment

Mizuno MaxCor -3 baseball bat ($150-400 on Amazon)

In this baseball batting practice Mizuno bat model experiment using the Zepp (Labs) Baseball app & Bushnell radar gun, I wanted to use the Scientific Method to analyze what would happen to Bat and Ball Exit Speeds comparing the performance of two different Mizuno bat models, but the same 34-inch, 31-ounce size:

 

Background Research

MIZUNO MAXCOR ($150-400)

According to the Mizuno website, the focus of this bat is maximizing Ball Exit Speed and backspin.  Some key features are (Mizuno site):

  • Viscoelastic Sleeve: Creates a wider circumferential sweet area.
  • New Variable Wall Thickness Alloy Core: Increases the sweet area across the length of the barrel, using aircraft aluminum alloy used to keep overall weight low.
  • Dynamic Damper: Transition piece from barrel to handle absorbs vibration for better feel.
  • New Improved Synthetic Leather Grip: Provides tack and great feel.
  • Lower more balanced swing weight for increased swing speed.
  • BBCOR certified, approved for NCAA & NFHS play
  • Barrel Diameter: 2 5/8″
Baseball Batting Practice Mizuno Bat Model Experiment: Generation Model

Mizuno Generation -3 baseball bat ($70-200 on Amazon)

MIZUNO GENERATION

According to Mizuno’s site, the Mizuno Generation baseball bat was designed with two things in mind:

  1. A bigger sweet spot, and
  2. Balance – (lighter swing weight, which can result in faster bat speeds).

Key features of the baseball batting practice Mizuno Generation bat (Mizuno site):

  • Patented wall thickness technology varies the wall thickness across the barrel, creating a massive sweet area for ultimate forgiveness
  • Single wall aerospace grade aluminum alloy used for maximum combination of performance and durability
  • Balanced swing weight for increased swing speed and bat control
  • Digi-Grip for great feel and durability
  • BBCOR certified, approved for USSSA
  • Barrel Diameter: 2 5/8″

Another factor in this baseball batting practice Mizuno bat model experiment will be breaking in a non-wood bat.  CLICK HERE for a good YouTube video on how to break-in a composite bat.  Now, both Mizuno bats are not composites, but I’m sure the breaking in process with any non-wood, will have an affect on Ball Exit Speeds.

We’ll adjust the data to address breaking in the bat in the Notes section.

 

Hypothesis

Based on the above baseball batting practice Background Research from Mizuno (albeit promotional materials), and the fact the MaxCor is double the price, I’d expect a much better performance in Bat and Ball Exit Speeds using the MaxCor model bat versus the Generation.

 

Baseball Batting Practice: Mizuno Bat Model Experiment

Baseball Swing Mechanics Experiment: Zepp Baseball App

CLICK Image to Purchase Zepp Baseball App

Equipment Used:

Setup:

  • All baseball batting practice swings were taken off the tee.
  • I used two yellow dimple ball markers to make my stance setup consistent…one was placed inside my back foot, close to the plate.  The other was placed one bat’s length plus two baseballs in front of the back marker.
  • CLICK HERE for the Google Drive excel document with all the Ball Exit Speed (BES) readings.
  • We deleted radar gun mis-reads that registered below 30-mph on the gun.
  • Therefore, we deleted 11 mis-reads from the Mizuno MaxCor bat data, and averaged all MaxCor BES readings to 89 swings.
  • Also, we deleted 7 mis-reads from the Mizuno Generation bat data, and averaged all Generation BES readings to 93 swings.
  • The two tests in the experiment were counter-balanced.  Which consisted of eight blocks of 25-swings done in the following order ABBA BAAB.  Swinging the “Mizuno MaxCor” were letter ‘A’, and
    “Mizuno Generation” were letter ‘B’.  200 total swings were completed in the experiment, 100 per test.  Counter-balancing helps remove the “getting tired” and “not being warmed” up factors.

Data Collected (Zepp Baseball App):

Baseball Batting Practice: Mizuno Bat Model Experiment

According to the Zepp app, the Mizuno MaxCor came out supreme in all areas except the Attack Angle…

 

Data Analysis & Conclusion

ZEPP READINGS:

  • Avg. Bat Speed at Impact increased by 3-mph using the Mizuno MaxCor,
  • Avg. Max Hand Speed increased by 2-mph using the Mizuno MaxCor,
  • Avg. Time to Impact decreased by 0.063,
  • Avg. Bat Vertical Angle at Impact decreased by 1-degree using the Mizuno MaxCor, and
  • Avg. Attack Angle decreased by 4-degrees using the Mizuno MaxCor.

BUSHNELL BALL EXIT SPEED READINGS (CLICK HERE for Google Excel Doc):

  • Avg. Ball Exit Speed increased by 4.6-mph using the Mizuno Generation bat,
  • Top out Ball Exit Speed was 95-mph using the Mizuno Generation bat, and
  • Top out Ball Exit Speed was 90-mph using the Mizuno MaxCor bat.

 

Notes

  • Now, we can’t compare apples to apples baseball batting practice data using the Zepp app and Bushnell radar gun.  If I had one more Bushnell radar gun capturing my bat speed readings perpendicular to my chest, then that would’ve been an interesting comparison.
  • I felt much more balance with the Mizuno Generation.  I also felt like I was more consistently hitting the sweet spot, as their marketing suggests.  For some reason it was tough feeling a consistent sweet spot using the MaxCor, maybe because of the “Dynamic Damper: Transition piece from barrel to handle absorbs vibration for better feel”.
  • It takes about 100-200 swings to break in a non-wood bat, at least according to the following YouTube video on How-To Break-in a Composite Bat.  I’m going to share a Zepp app screenshot comparing the first 100 swings using the Mizuno MaxCor (from this experiment), to the first 100 swings using the Mizuno Generation (from the Baseball Swing Tips: Mizuno Bat Size Experiment):
Baseball Batting Practice: Mizuno Bat Model Experiment

Look at the near identical performance Zepp data between the two bats when we compare their first 100 swings…

  • How about comparing the Ball Exit Speeds of the first 100 swings…according to this Google spreadsheet, the Mizuno MaxCor Avg. Ball Exit Speed was: 83.5-mph.  And according to this Google spreadsheet from a couple weeks before, Avg. Ball Exit Speed using the Mizuno Generation 34/31 was:  88.3-mph.

The Bottom Line?

Well, according to the baseball batting practice Mizuno bat model experiment data, it looks like the Generation model holds the performance edge when it comes to Ball Exit Speed, almost a 5-mph difference.  That’s about 20-feet of extra distance!  From how the experiment turned out, I’d save the $200 and buy a Mizuno Generation.  Now, this data doesn’t mean EVERY expensive bat will under-perform it’s more economic brethren, it just means you need to tinker and test to find the truth.

Question: Does a Slight “Downhill” Shoulder Angle Before Landing Boost Baseball Swing Load & Bat Speed?

In this baseball swing load “shoulder” angle experiment using the Zepp (Labs) Baseball app, I wanted to use the Scientific Method to analyze what would happen to Bat & Hand Speed when we took 100 swings with a slight “Downhill” shoulder angle (about 8-10-degrees) versus another 100 swings with level shoulders.

The Feedback Lab parent testimonial about his 14 year old daughter Mia:

“Hey Coach,

It has been way too long but I wanted to share some information that happened yesterday. We are heading up to Chattanooga, Tennessee, the largest showcase in the southeast today. Yesterday was our last day to hit before the showcase and Mia was struggling with her power. We hit about 60-70 balls and Mia was hitting about 10% over the fence (she is usually 40%+). I was looking to make sure she was showing her number, which she was, hiding her hands, which she was, landing with a bent knee, which she was and etc., etc. It was getting late and we had to go and I told Mia she had only 6 balls left. I told her to show me her stance and I noticed that her front shoulder was equal to her back shoulder. I then told her to lower her front shoulder and raise her back one. That was the only change we made to her swing, Mia then hit the next 6 balls over the fence and 2 of them were bombs. I cannot believe the difference this one small change made.

Thanks,
Primo”

 

Background Research

Baseball Swing Load: Miguel Cabrera WSJ Info-Graphic

Wall Street Journal Info-Graphic at: http://gohpl.com/1NFi8qi

The best resource for getting educated on spinal engine mechanics is to pick up Dr. Serge Gracovetsky’s book The Spinal Engine.  For a teased out version of this,

CLICK HERE for a post I did that compared the pitching delivery, hitting, and an overhead tennis serve using this “bending sideways” technique.

Another good book from multiple authors on the subject of spinal engine mechanics, locomotion biomechanics, and springy fascia, check out the book Dynamic Body by leading author Dr. Erik Dalton.

Also, here’s a great Wall Street Journal post about Miggy Cabrera titled, Miguel Cabrera: The Art of Hitting.  Check out what the illustration says in the middle of the red circle above…

 

Hypothesis

Based on the above baseball swing load experiment research and one of the other countless online hitting testimonials I get about “bending sideways” benefits, I think using a slight “Downhill” Shoulder Angle will boost Bat Speed at Impact by at least 3-mph, and Hand Speed Max by 2-mph.

 

Baseball Swing Load: “Downhill” Shoulder Angle Experiment

Baseball Swing Mechanics Experiment: Zepp Baseball App

CLICK Image to Purchase Zepp Baseball App

Equipment Used:

Setup:

  • Tyler Doerner, my intern for the summer and a hitter in HPL’s The Feedback Lab, is a redshirt college Freshman.  He did the baseball swing load shoulder angle experiment.
  • Tyler broke the swing into two steps: 1) get to landing position, pause for 1-2 seconds, 2) then swing, to better control the shoulder angle during the tests.
  • So, there was an absence of forward momentum in this experiment.
  • The two tests in the experiment were counter-balanced.  Which consisted of eight blocks of 25-swings done in the following order ABBA BAAB.  “Level Shoulders” were letter ‘A’, and
    “Downhill Shoulders” were letter ‘B’.  200 total swings were completed in the experiment, 100 per test.  Counter-balancing helps remove the “getting tired” and “not being warmed” up factors.

 

Data Collected (Zepp Baseball App):

Baseball Swing Load: Zepp Screenshot of Shoulder Angle Experiment

Look at the significant jumps in average Bat Speed at Impact & the Attack Angle…

Data Analysis & Conclusion

  • There’s a significant 4-mph JUMP in average Bat Speed at Impact with the “Downhill” Shoulder Angle.
  • Average Hand Speed Max only increased by 1-mph with the “Downhill” Shoulder Angle.
  • There was a small change in Time To Impact, in favor of the “Downhill” Shoulder Angle.
  • Not a big change in the Bat Vertical Angle at Impact.
  • And there was a significant 3-degree angle change in Attack Angle with “Downhill” Shoulder Angle.

Notes

  • We found a slightly bigger increase in average Bat Speed at Impact with the “Downhill” Shoulder Angle compared to my Hypothesis (4-mph versus 3-mph).
  • I thought there was going to be a bigger difference in Hand Speed Max, than how it turned out.
  • What was surprising was the 3-degree angle change of the attack angle.  A 10-degree Attack Angle is a typical line drive.  Once you start to get into the 15-20 degree range, you’re looking at more of a home-run launch angle.
  • The “Downhill” Shoulder Angle is actually something we’re working in Tyler’s swing.  He tends to let go of his angle a little too soon.
  • I find that before and after Ball Exit Speed readings with my local hitters who’re familiar with the “Downhill” Shoulder Angle, can increase from 1-3-mph when this it the only mechanic we’re working on.

The Bottom Line?

In this baseball swing load shoulder angle experiment, we can clearly see with the “Downhill” Shoulder Angle that there’s a significant 4-mph jump in Bat Speed at Impact, AND a surprising 3-degree boost in the Attack Angle.  The “Downhill” Shoulder Angle is a piece of what I call the Catapult Loading System.  The BIG-3 are:

  1. Downhill shoulder angle,
  2. Hiding hands from the pitcher, and
  3. For #3…

Question: Do “Squish the Bug” Baseball Swing Mechanics Depress Bat Speed?

 

Baseball Swing Mechanics Experiment: TylerD

Here are the two test swings from my intern for the summer, redshirt college Frosh, Tyler Doerner…

Using the Zepp (Labs) Baseball app, I wanted to use the Scientific Method to analyze if the baseball swing mechanics “squishing/squashing the bug”, during the turn, increases or decreases bat speed.  The term “squishing the bug” means rotating the back foot, on the ground, during the turn.  Like you’re squishing a bug.

This can be a very sore subject, and hotly debated with a passion, in the Church of Baseball.  Surprisingly, it’s still widely taught throughout the lower levels.  Although a few images off the internet of effective swingers like Cano, Bautista, McCutchen, etc. will reveal “squishing the bug” isn’t what the best are doing.

So we wanted to test it…

My intern for the summer, redshirt college freshman Tyler Doerner did this experiment.  This post is for you Joe (you know who you are ;-)…

Background Research

One of the main objectives of whether to skip the foot, or keep it on the ground, has to do with transferring linear momentum, better known as un-weighting or forward momentum.  Check out these four HPL posts for a baseball swing mechanics background on this:

  1. Troy Tulowitzki Zepp Swing Experiment: Stride Killing Bat Speed?
  2. Ryan Braun: Common Mistakes Hitters Make #1
  3. Baseball Hitting Video: Gain Distance the Easy Way PART-1
  4. Perfect Swing Hacking with Forward Momentum (feat. Mike Trout)

Now, for you academics, CLICK HERE to watch a short 2-minute PBS video on Circus Physics and the Conservation of Linear Momentum.

So, after reading/watching the above videos and posts, we should be at a common understanding of Forward Momentum.

The next objective of “squishing the bug” versus “skipping the back foot” during the turn, boils down to allowing the body to transfer energy effectively.  This has to do with springy fascia in the body…

In Thomas Myers’s book Anatomy Trains, he talks about a cotton candy like springy material that the bones and muscles float it, and what gives muscles their shape called fascia.

Specifically in the book, he talks about the Front & Back Functional Lines.  CLICK HERE for a post I did on this, featuring Ted Williams and Matt Kemp.

In the following video, Thomas Myers explains this idea of Tensegrity, or Tension-Integrity.  There are compression and tension forces acting on the body at all times.  Within the body these two opposing forces are always searching for balance…

For a hitter, if the body moves forward, but the back foot and leg stays behind, then these forces don’t get optimally transferred from body to barrel to ball.  In other words, the backside gets “left behind”.

Hypothesis

Based on the above research, I think “squishing the bug” baseball swing mechanics will have a depressing effect on bat and hand speed because it doesn’t allow for full transfer of momentum and release of elastic energy in the springy fascia.

 

“Squish the Bug” Baseball Swing Mechanics Experiment

Baseball Swing Mechanics Experiment: Zepp Baseball App

CLICK Image to Purchase Zepp Baseball App

Equipment Used:

Setup:

  • Forward momentum was taken out of this baseball swing mechanics experiment by hitting from a 1-2 second pause at landing
  • Back two “baseball markers” were set at about 3 baseballs apart
  • The two tests in the experiment were counter-balanced.  Which consisted of eight blocks of 25-swings done in the following order ABBA BAAB.  Say “squish the bug” was letter ‘A’, and “skipping back foot’ was letter ‘B’.  200 total swings were completed in the experiment, 100 per test.  Counter-balancing helps remove the “getting tired” and “not being warmed” up factors.

 

Data Collected (Zepp Baseball App):

Squish the Bug Baseball Swing Mechanics Experiment

There were significant changes in Average Bat & Hand Speed, Time to Impact, and surprisingly, the hitter’s Attack Angle in this baseball swing mechanics experiment…

Data Analysis & Conclusion

  • +8-mph difference in average Impact Bat Speed, siding on “Skipping Back Foot”,
  • +3-mph difference in average Hand Speed Max, siding on “Skipping Back Foot”,,
  • -0.019 difference in average Time To Impact, siding on “Skipping Back Foot”, and
  • +4-degree difference in average Attack Angle, siding on “Skipping Back Foot”.

 

Notes

  • I think the “Squish the Bug” baseball swing mechanics experiment results were overwhelmingly clear.
  • Tyler did not technically keep his back foot posted to the ground during the “squish the bug” tests, so there still was an element of un-weighting going on with his backside.
  • In which case, measuring Ball Exit Speed (or how fast the ball came off the bat) may have netted interesting data to consider, compared to Impact Bat Speed.  However, with the results with the other readings of Avg. Hand Speed, Time To Impact, and Attack Angle, I think we can put the “Squish the Bug” baseball swing mechanics myth to bed 😀
  • The data and results suggests that when a hitter “leaves behind their backside”, there’s a slowing down of forward momentum, and the body naturally decelerates because the springy fascia is forced to stretch, but not release.
  • Keep in mind what I call the Goldilocks Syndrome.  The back foot can skip too far (porridge too hot), and it can also not skip at all (porridge too cold).  We want the back foot to skip just right.

The Bottom Line?

In this “Squish the Bug” baseball swing mechanics experiment, “Skipping the Back Foot” showed a notable difference in average Bat & Hand Speed, Time To Impact, and the hitters Attack Angle.  I want to encourage you to tinker and test this for yourself.  The objective of these swing experiments is to put modern hitting theory to the test, literally.  We NEED to test based on data, not feelings.  Share these results with friends.