Posts

Hitting Training For Baseball & Softball Swing Trainers | Hitting Performance Lab

‘Showing Numbers’ to Pitcher is a Quick Way to Solving Consistent Power Problem

 

Question: How does ‘Showing Numbers’ to the Pitcher Effect Bat Speed at Impact versus ‘NOT Showing’ them?

Aaron Judge Showing Numbers to the Pitcher

Aaron Judge (Showing Numbers), unloads a solo home run to center field on 10/17/17 to put the Yankees on the board in the 7th inning.

Using the Zepp (Labs) Baseball app, I wanted to use the Scientific Method to analyze if a hitter showing their numbers to the pitcher at landing adds to or takes away from key swing performance metrics like Bat Speed at Impact, Time To Impact, and Attack Angle.  This swing experiment is revisiting two other experiments done analyzing the same thing.

 

Background Research

Since we’re REVISITING two previous swing experiments on ‘Showing Numbers’ versus NOT, here are the original posts and data to get you up to speed:

In 2016 ‘Show Numbers’ swing experiment, this was what the averaged out Zepp data looked like:

  • 5-mph INCREASE in Bat Speed at Impact with ‘Showing Numbers’,
  • 0.5-mph INCREASE in Hand Speed Max with ‘Showing Numbers’,
  • .003 second DECREASE in Time to Impact with ‘Showing Numbers’,
  • 3* INCREASE in Bat Vertical Angle at Impact with ‘Showing Numbers’, and
  • 1.5* INCREASE in Attack Angle with ‘Showing Numbers.

Now, let’s see how the Ball Exit Speed averages compare:

  • 76.02-mph BES when ‘NOT Showing Numbers’,
  • 77.32-mph BES  when ‘Showing Numbers’,
  • That’s a 1.3-mph average INCREASE when ‘Showing Numbers’, and
  • Translates between 5.2-feet to 7.8-feet of EXTRA batted ball distance – depending on if you calculate using 1-mph BES = 4-feet of distance OR 1-mph BES = 6-feet of distance.

In this experiment, if you look at the ‘NOT Showing Numbers’ swings, they were actually ‘Showing Numbers’.  In other words, the subject in the swing experiment, Preston Scott, already shows his numbers well causing a challenge to not show them.  Therefore on the ‘Showing Numbers’ swings, he showed them more.  I think that’s why we didn’t see as much of a difference in Ball Exit Speeds.

In 2014 ‘Show Numbers’ swing experiment, this was what the averaged out Zepp data looked like:

  • Bat speed for NOT showing numbers at landing: 73-mph,
  • Bat speed for showing numbers at landing: 79-mph (+6-mph),
  • Highest bat speed for NOT showing numbers at landing: 82-mph,
  • Highest bat speed for showing numbers at landing: 88-mph (+6-mph),
  • Hand speed max for NOT showing numbers was: 27-mph, and
  • Hand speed max for showing numbers was: 29-mph (+2-mph).

Between both swing experiments, we saw an average Bat Speed at Impact increase between 5 to 6-mph.  In 2016 we saw a .003 second drop in Time To Impact ‘Showing Numbers’, while in 2014 we saw a .003 increase.

The research on increasing bat or ball exit speed can be seen in the following two books on springy fascia and spinal engine mechanics:

You can also get application of previously mentioned books through the following HPL video blog posts.

  1. Miguel Cabrera and the timing of torque.
  2. Josh Donaldson v. Jose Bautista: how spine engine mechanics are amplified by Gravitational Forces, and
  3. Adrian Gonzalez: how-to naturally spring load the body.

For those versed in Anatomy, for explosive movement on the Transverse Plane (twisting), there must be a protraction of the front scapula (‘showing numbers’), and a retraction of the back Scapula (what’s often referred to as ‘Scap Row’).  Scap Rowing by itself doesn’t engage full range of springy fascia.

 

Hypothesis

Based on the above research, I’m expecting to see a dramatic bump in Bat Speed at Impact, Hand Speed Max, and possibly a reduction in Time To Impact.  I think Attack Angle and Bat Vertical Angle at Impact will remain unchanged.

 

Showing Numbers Swing Experiment Part-3

Equipment Used:

SwingAway Bryce Harper model

This is the SwingAway Bryce Harper model hitting station used for the ‘Showing Numbers’ experiment.

Setup:

  • SwingAway Bryce Harper bungy suspended ball was set equal to the landing foot, and ball height was about knee height.
  • I broke each swing down into three steps: 1) Get to landing, 2) Pause for 2-secs, and 3) Swing.  The reason for this was to better control whether I was showing numbers or not.
  • The two tests in the swing experiment were counter-balanced.  Which consisted of eight blocks of 25-swings done in the following order ABBA BAAB.  ‘Showing Numbers’ was letter ‘A’, and ‘NOT Showing Numbers’ was letter ‘B’.  200 total swings were completed in the experiment, 100 per test.  Counter-balancing helps remove the “getting tired” and “warm up” factors.
  • The ‘Showing Numbers’ swing shoulders were set to about 2’o’clock, if pitcher is 12’o’clock.  The ‘NOT Showing Numbers’ swing shoulders were set to about 12’o’clock.

 

Data Collected from Zepp Baseball App:

'Showing' v. 'NOT Showing' Numbers to Pitcher Zepp Numbers

Data Analysis & Conclusion

Zepp data analysis comparing the averages:

  • Bat Speed at Impact INCREASE of 3-mph ‘Showing Numbers’,
  • Hand Speed Max DECREASE of 1-mph ‘Showing Numbers’,
  • Time To Impact INCREASE of 0.014 ‘Showing Numbers’,
  • Bat Vertical Angle At Impact DECREASE of 4-degree ‘Showing Numbers’, and
  • Attack Angle INCREASE of 6-degrees ‘Showing Numbers’.

The drop from previous ‘Showing Numbers’ swing experiments was surprising, in addition to a small 1-mph drop in Hand Speed Max.  There was also a slight increase in Time To Impact.  The interesting numbers were the ones that indicate Launch Angles, both Bat Vertical Angle at Impact and Attack Angle.  We hadn’t experienced such a dramatic uptick in those in past experiments.

A couple notes…

  • The past two experiments were done in a cage, off a tee, so I could see ball flight, and maybe that had an effect on the swing metrics.
  • Some hitting coaches speak highly of Time To Impact and want to reduce at all cost, but I disagree. There’s a healthy range for that, you don’t want it too short or too long.  I’m not going to get into why here, maybe in another post.
  • To explain the dramatic increase of the barrel’s upward trajectory in ‘Showing Numbers’, I may have been getting more of a downward shoulder angle at landing.
SwingAway Trainer: Pro Baseball Traveler

SwingAway Baseball Swing Trainer: How-To Build A Swing You Can Be Proud Of…

 

I’ve wanted to do a “how-to experiment” post for a long time.  But in the past, technology hadn’t quite caught up,

SwingAway Trainer: Pro Baseball Traveler

SwingAway Trainer: Pro Baseball Traveler

…and NOW it has!

Mark Twain once said:

“Whenever you find yourself on the side of the majority, it is time to pause and reflect.”

I want:

  • …To lay out the landscape, in this Baseball Swing Trainer post, about using the SwingAway for conducting hitting experiments,
  • …This article to empower you to take up arms with me, and turn conventional hitting wisdom on its stubborn little head, and
  • …To inspire you to use modern technology to build a swing we ALL can be proud of.

I’m embarrassed to share the following story…

I did my first hitting experiment in the sixth grade with a buddy, for a school project.

My friend and I ran an experiment to see if a wood or aluminum bat could hit the ball farther.

One day after school, we pitched to each other at the Little League diamond we played our games at.  We used two aluminum Easton baseball bats and a Ken Griffey Jr. signature Louisville Slugger woody.  One aluminum bat was 32-inches and 24-ounces, and the other was 31-inches and 23-ounces.  And I can’t remember what the woody measurements were, but it was comparable.

I think we might have hit about 50 balls with each bat (150 balls total), and get this…measured the distance with our feet! 😀 lol

Based on our results, guess which bat hit the ball the farthest?  Wood or aluminum?  The wood bat!!!  Waaa??

Well, it was only because we weren’t being very scientific with our scientific experiment.  One of the big reasons we didn’t get a good grade on the project was because we DID NOT isolate the variables

  • We threw LIVE batting practice to each other.  We should have used a baseball hitting trainer like a batting tee or SwingAway (wasn’t around at the time).
  • We both took turns hitting, and didn’t separate our individual batted ball distances.
  • We used different sized bats.
  • We measured using our own feet…I was a men’s 8/9 at the time, and my buddy was an 11. We should’ve used a rolling tape measure.
  • We only took a small data sample size. We should’ve hit 100 balls with the wood bat, and then 100 with aluminum.  AND we should have only used one of the aluminum bats (preferably the one closest in size and weight to the woody).  So 400 swings total (200 swings for me, 200 for my friend).  Then compared apples to apples.

Remember, failure is only a detour, not a dead end 😉

The good news is,

You don’t have to be a scientist to run a hitting experiment.

What follows is the exact formula I use now, to run my hitting experiments using the SwingAway baseball swing trainer.  My hopes is that you pick up arms, and join me in the fight…

 

The Definitive Guide to Conducting a Baseball Swing Trainer Experiment

Up until now, here are SIX hitting experiments I’ve run:

 

Equipment & Setup

You can read the full list at the above swing experiment links.  But here are a couple pieces of equipment that will have a drastic effect on bean counting and saving time doing the experiment itself…

Zepp Baseball App
Baseball Swing Trainer: Zepp Baseball App

Zepp Baseball App

Great tool for collecting data.  It’s not perfect, but all we need is an apples to apples comparison.  Unfortunately, the Zepp app DOES NOT allow you to separate experiment swings from recreational ones.  You have to delete ALL swings before doing an experiment, unless you want to do the bean counting yourself.

You’ll also need to create two email accounts with Zepp to separate the two experiment tests.  Zepp allows you to “Add a Hitter” in one account, but it doesn’t allow you to separate that data from other hitters or swings and average the data out.

SwingAway Baseball Swing Trainer

I just started using a SwingAway for my swing experiments.  I used to hit the ball off an ATEC Tuffy Batting Tee, but it was taking me 2 1/2 to 3 hours to run my experiments.  Fatigue could set in and skew the results.  Some experiments where you’re looking at ball flight (like Bent Back Knee experiment above) will most definitely need to be done off a batting tee.

Using the SwingAway baseball swing trainer took me only 1 1/2 hours!  NO need for:

  • Ball cleanup,
  • Ball setup, or
  • Waiting more than a few seconds for the ball to return to its stationary position.

This saved me a ton of time.  All you need is a 10 X 10 space to conduct your SwingAway baseball swing trainer experiment.

Baseball Swing Trainer Experiment Optimization Tips…

  • Limit Variables – The main objective of a baseball swing trainer hitting Experiment, is to isolate what you’re trying to test.  Like my sixth grade experiment from earlier, there were too many variables that we didn’t control.
  • Priming the Pump – I always start an experiment by warming up my body with a pre-practice routine, similar to this Dr. Stanley Beekman’s post.  You don’t have to do all included exercises, so pick about eight of them.  I’ll also take about 10-15 swings focusing on the specific mechanic I’m going to be testing that day.  For example, if I was testing showing the pitcher my numbers versus not, then I’d do 10-15 swings both ways, so 20-30 swings total before officially starting the experiment.  We prime the pump so nobody can see, “Well, your numbers sucked in the beginning because you weren’t warmed up.”
  • Counter-Balancing – The two tests in the experiment should be counterbalanced.  Which consisted of eight blocks of 25-swings done in the following order ABBA BAAB.  Say “showing the numbers” was letter ‘A’, and “not showing the numbers” was letter ‘B’.  200 total swings are to be completed in the experiment, 100 per test.  Counter-balancing helps remove the “getting tired” and “not being warmed” up factors.
  • More Data Points – I take at least 100 swings for both tests in the experiment, so 200 swings total (not counting warm-up swings).  So, taking the “showing numbers” as an example, I’d take 100 swings showing my numbers, and then take another 100 swings not showing my numbers.  The Zepp App is a useful technology, but isn’t super accurate.  But the more data you collect, the closer to the “real” numbers you’ll get.
  • Break the Swing Apart – If you aren’t confident that you can repeat a specific mechanic consistently for 100 swings, then break the swing apart, like I talk about in this YouTube video.  I did this in the showing the numbers experiment above.
  • Collect Ball Flight Data (optional) – for some mechanics, like testing the back leg angle during the turn experiment, it’s critical to collect ball flight data on the Zepp app.  Zepp allows you to manually input where you hit the ball after each swing.  Testing the grip on the bat would be another example.  Also, adding Ball Exit Speed readings could enhance the baseball swing trainer experiment, Bushnell Velocity Radar Gun (about $80), or Stalker Radar Gun ($500+).  ESPN’s HitTrackerOnline.com uses the latter in all MLB ballparks.  Just remember, accuracy isn’t as important as an apples to apples comparison.
  • Recovery – I usually will give my body about 30-minutes rest between the first 100 swing test and the second.  I now use supplement timing like Zach Calhoon maps out in these posts.  I sip on Zach’s “concoction” throughout the full experiment to keep my muscles fueled.  I then take Vitamin C and E capsules afterward to help with soreness.
  • Brainstorming Experiments – Don’t have any ideas on what to test?  I did the heavy lifting for you.  And by no means is this an exhaustive list of possible experiments. CLICK HERE for my brainstormed list.
  • Take Notes – make note of my “notes” in the above experiments.  Basically, the notes section are things that you noticed while doing the tests that may not be apparent to the person reading about the experiment.

 

In Conclusion…

In this baseball swing trainer post about using the SwingAway for hitting experiments, I wanted to lay out the landscape and empower you to help me take up arms.  I want to turn conventional hitting wisdom on its head, and use modern baseball swing trainer technology to build a swing we ALL can be proud of.

Let’s revisit the Mark Twain quote from earlier:

“Whenever you find yourself on the side of the majority, it is time to pause and reflect.”

I need your help and can’t fight this fight alone.  I want you to take action…

My challenge to you is let’s band together and conduct 30 Experiments in the next 30 days.  If all of us do at least one swing experiment, then we should be able to knock this goal out by July 15th.

Just post your baseball/softball hitting experiment results below in the comments section.  Reply with:

  • What experiment you ran (from the brainstorm list above)?
  • How many swings per test (i.e. 100/100), and what order did you do the test?
  • What bat did you use (length, weight, and wood/aluminum)
  • Hit off tee or Swingaway baseball swing trainer?
  • What metric changes were significant (bat speed/hand speed/bat vertical angle at impact/attack angle/ball flight/ball exit speed)?

Thanks in advance for your baseball swing trainer experiment comments!

Jose Bautista Staying Closed

“Blocking” Like Jose Bautista: A Baseball Hitting Drills For Bat Speed Experiment

 

Baseball Hitting Drills For Bat Speed: Jose Bautista "Blocking"

Image on left is Jose Bautista at landing, and image on right is referred to in Discus Throwing circles as “Blocking”…

 

Question: Does Landing Bent with the Front Knee & then Straightening it, Add Bat Speed?

Using the Zepp (Labs) Baseball app, I wanted to use the Scientific Method to analyze if “Blocking”, or using Ground Reaction Forces (GRF), produces a significant gain in bat speed.

 

Background Research

Check out this YouTube video from ZenoLink about “Blocking”, or GRF:

 

CLICK HERE for a Wikipedia article defining Ground Reaction Forces.  Quote from post:

“The use of the word reaction derives from Newton’s third law, which essentially states that if a force, called action, acts upon a body, then an equal and opposite force, called reaction, must act upon another body. The force exerted by the ground is conventionally referred to as the reaction, although, since the distinction between action and reaction is completely arbitrary, the expression ground action would be, in principle, equally acceptable.”

CLICK HERE for another baseball hitting drills for bat speed post I did about Edwin Encarnacion: A How-To “Blocking” Guide.

 

Hypothesis

Based on the above baseball hitting drills for bat speed research and study, I think “Bent Knee Blocking” will produce more bat speed than “Straight Knee Blocking”.  For some of you, this may be obvious.  But the data comparing the two is quite interesting to see.

 

Baseball Hitting Drills For Bat Speed Experiment: “Blocking”Baseball Hitting Drills For Bat Speed: SwingAway MVP Bryce Harper model

Equipment Used:

Setup:

  • Yellow dimple ball feedback markers = my bat length, plus two baseballs
  • Distance from plate = end of the bat touching inside corner of plate, and knob of bat touching my mid-thigh.
  • SwingAway was set slightly behind the front feedback marker, and ball height was about the hip.
  • First 101 baseballs were hit with a landing leg angle of about 170-degrees.
  • Second 101 baseballs were hit with a landing leg angle of about 146-degrees.

 

Data Collected (Zepp Baseball App Screenshots):

Baseball Hitting Drills For Bat Speed: Blocking Experiment

Check out the differences in average bat speed and hand speed (red arrows)…

 

Data Analysis & Conclusion

  • 6-mph average bat speed difference between “Straight Knee Blocking” versus “Bent Knee Blocking”,
  • 2-mph average hand speed difference between “Straight Knee Blocking” versus “Bent Knee Blocking”,
  • The Average Time to Impact was about the same,
  • The average Bat Vertical Angle at Impact had a 6-degree difference, and
  • There was only 1-degree of difference between the Attack Angles.

Notes

  • I broke my swing into two steps (stopping momentum), to make sure I could accurately isolate the difference in the front knee action.
  • The “Bent Knee Blocking” 6-mph average increase  is equivalent to 24-48 feet of batted ball distance (depends on the speed of the pitch).
  • What was interesting was the huge shift in Bat Vertical Angle at Impact.  I suspect it’s because of the higher landing position, and the barrel compensated down to accommodate hitting the sweet spot.
  • Looking at the nominal increase in Attack Angle and the wide degree shift in Bat Vertical Angle at Impact, it looks like “Straight Knee Blocking” would lead to more mishits.
  • Like in this “Blocking” Experiment, baseball hitting drills for bat speed need to be put to the test.  We can’t just feel something will increase bat speed.  We must look at what the data says.

 

In Conclusion

From the Baseball Hitting Drills for Bat Speed Experiment data, we can see that “Bent Knee Blocking” produces more average bat and hand speed than “Straight Knee Blocking”.  The other thing that landing with a bent knee does (approx. 146-degrees), is shrink the strike-zone.  Or at least create an illusion that it’s shrinking, to the umpire.  I call this “Getting Shorter”.

Coupled with forward momentum, the hitter is making a “cut”, much like a wide receiver would on an “L” route.  Except instead of the wide receiver changing from the Sagittal (forward/backward) to the Frontal (sideways) Plane of motion, the hitter changes from the Frontal to Transverse (twisting) Plane of motion.  And in order to do this, the “plant leg” needs to be bent in order to transfer Ground Reaction Forces efficiently.  You’ll NEVER see an NFL wide receiver “cut” with a straight plant leg…they plant bent, then push into the ground to change directions.