Posts

Hitting Training For Baseball & Softball Swing Trainers | Hitting Performance Lab
Hitting A Baseball: Discover The Secret Of Impact

Robinson Cano hitting a baseball post-contact. Photo courtesy: TheNYPost.com

Learn how to swing a bat and hit a baseball or softball faster, farther, and harder EVERY TIME.  Discover beginner practice at home hitting to increase bat speed, power, exit velocity, and how to hit the ball in a certain direction.

Hitting A Baseball: Discover The Secret Of Impact

Debating the intricacies of hitting a baseball (or softball) can be as bad as discussing religion or politics.  This is why we look to proven human movement science first.  Hitting a baseball NOT easy, but we can make it easier.  It has a lot of failure built into the fabric.  The objective of every coach, instructor, or parent should be to build as many “fail-safes” into the system as possible.

We’re going to explore the following, as they relate to impact:

  • Perry Husband & Effective Velocity,
  • 90-Degree Angle to the Spine Rule NOT True?
  • University of Miami Study: The Biomechanics of the Baseball Swing
  • Conclusion…

First I want to start by setting the table…

 

Perry Husband & Effective Velocity

Hitting a Baseball: Perry Husband Effective Velocity Pitching System

“Pluses” take-away from hitter’s reaction time, “minuses” add to hitter’s reaction time (images are pitcher’s POV). Photos courtesy: HittingIsAGuess.com

The one thing I like about Perry Husband’s contribution to hitting a baseball is he goes by “data, not feelings”.

He’s made a science out of a hitter’s reaction time.  Perry Husband has accumulated, “Over 10 years of study and testing of amateur hitters and two years of intense study of major league at bats in a 4 million plus pitch database”.  At his site Effective Velocity, Perry Husband explains his Effective Velocity system for pitchers:

The Downright Filthy Pitching Series is a very in depth study of speed as it relates to the hitter’s reaction time.  Initial velocity is the speed of the ball as the radar gun sees it, perceived velocity is the speed of the ball as the mind’s eye sees it and Effective Velocity is the speed it actually is.   Effective Velocity (EV) is the initial velocity plus the location effects of the pitch due to different locations having different reaction times…A 90 MPH pitch can and does equal many different speeds, depending on where the pitch is located. “

His data (photo above) suggests that a hitter has to be quicker to pitches up in the zone, and in.  And pitches down in the zone and away, give a hitter more time to adjust.  Perry Husband reports from his findings:

“Did you know that the highest exit velocities off Major League hitters’ bats come off the pitches in the lowest part of the strike zone? How about that the most homeruns hit are off pitches at the very bottom of the strike zone as well?”

Over the past year, I’ve softened to some of Perry’s hitting a baseball mechanics.  His information is vital to understanding if…

90-Degree Barrel Angle to the Spine Rule NOT True?

Hitting a Baseball: Giancarlco Stanton 90-degree Barrel to Spine Rule

Giancarlo Stanton: 90-degree barrel to spine rule. Note: outside pitch slightly up in zone. Photo courtesy: MLB.com

CLICK HERE for the post that explains this Rule.  The preceding post link refers to the barrel, not the front arm to spine angle. There are FOUR ways a hitter gets to pitches at the top/bottom of the strike-zone, and/or inside/outside of the plate…

  1. Tilting at the waist with the upper body (the lower the pitch, the more the tilt),
  2. Back knee bend,
  3. Front knee bend, AND
  4. Barrel path.

Another reader got upset saying that I’m teaching two different swings.  And enlightened me about his extensive study into the brain, and that taking a bent arm from the initiation of the swing and changing the shape to straight is impossible for the brain to do.  Click Here for a conversation Perry and I had on the arm bar.

Remember, Perry Husband said that the highest ball exit speeds and home-runs were off of lower pitches?  Do you think it could be because the front arm was able to extend at impact?  Creating a longer lever and allowing for a smooth transfer of bat speed (angular velocity) into ball exit speed (inertial force).  These are fundamental rules in the Conservation of Angular Momentum.

Look, if our goal as coaches is to get hitters 100% on-time, 100% swing effective, then we must take a serious look at the front arm bar.  High exit velocity is key to batted ball distance, and without it Launch Angles alone won’t score more runs.  Besides, how many commercial and/or passenger airplanes get off the ground without high horizontal velocity?  CLICK HERE for an interview we did with Perry Husband about his system.

One last thing to look into hitting a baseball…

 

University of Miami Study: The Biomechanics of the Baseball Swing

Hitting a Baseball: Josh Donaldson just past impact

Josh Donaldson game winning dinger high inside pitch. Photo courtesy: MLB.com

Major shout out to one of my readers and local lesson parents, Nieszka, for bringing this to my attention.  This study was done by Dr. David Fortenbaugh at the University of Miami (CLICK HERE if you want to download the 200+ page pdf).  Here’s the gist of how the study was put together:

  • Study Objective: to compare swings against pitches thrown to different locations and at different speeds.
  • AA-level Minor League Baseball players (n=43) took extended rounds of batting practice in an indoor laboratory against a pitcher throwing a mixture of fastballs and changeups.
  • An eight camera motion analysis system and two force plates recording at 300 Hz captured the biomechanical
    data.
  • The swing was divided into six phases (stance, stride, coiling, swing initiation, swing acceleration, and follow-through) by five key events (lead foot off, lead foot down, weight shift commitment, maximum front foot vertical ground reaction force, and bat ball contact).
  • Twenty-eight kinematic measurements and six ground reaction force measurements were computed based on the marker and force plate data, and all were assessed throughout the phases.

The findings?

According to the Study:

“A large number of biomechanical differences were seen among the swings against various pitch locations. More fully rotated positions, particularly of the pelvis and bat were critical to the batters’ successes on inside pitches while less rotated positions keyed successes against outside pitches. The trail and lead arms worked together as part of a closed chain to drive the hand path. Successful swings had the trail elbow extended more for HIGH IN and flexed more for LOW OUT, though batters often struggled to execute this movement properly. A distinct pattern among successful swings against fastballs, successful swings against changeups, and unsuccessful swings against changeups was witnessed; namely a progressive delay in which the batter prematurely initiated the events of the kinetic chain, especially when unsuccessful in hitting a changeup.”

 

Hitting a Baseball Conclusion

So, let’s tie up everything we talked about in hitting a baseball…

On pitches low and/or away, the hitter has more reaction time (Perry Husband research), so tilting at the waist (on lower pitches) and extending the front elbow to impact is key (90-degree barrel spine rule).  And because the outside and lower pitches will be hit slightly deeper than inside and higher pitches, the trailing elbow will have more bend in it at impact (Miami Study).

There can be a harmonious relationship between an arm bar, and consistency getting to pitches up and in the zone.  CLICK HERE for this post that gets into the different “catcher’s gloves” on how to do this.  HINT: it has to do with the “belly button” catcher’s glove.

Readers, I want to hear your thoughts on hitting a baseball in the Comments below…

Hitting Training For Baseball & Softball Swing Trainers | Hitting Performance Lab

Longest Home Run Ever “Principles” May SURPRISE You…

 

 

Is the 700 foot home run the longest ever?  And how hit it?  Mickey Mantle, Babe Ruth, Barry Bonds, or Aaron Judge?  The answer will shock you.  What about the longest MLB home run in 2021?  Or in the World Series?  What is the optimal home run launch angle and exit velocity formula?  And how do you get it?  Interesting swing experiment…

Longest Home Run Ever? 696-Feet!

Photo Courtesy of: SmarterEveryDay YouTube channel

Popular player longest home runs:

But before analyzing the longest home run ever ‘principles’, I want to share a few important resources…

Some of you may remember first reading Physics Professor Robert Adair’s book The Physics Of Baseball.  Think of the above video as the “engineering” of baseball – ahem, hitting specifically.  Many of you know our motto here at Hitting Performance Lab and HOW our hitting approach is different than most out there …

We apply human movement principles that are validated by Science, to hitting a ball … (unlike the willfully ignorant ‘bro-science’ approach to hitting).  

Another good longest home run ever engineering principles book resource is The Golfing Machine authored by Homer Kelley, who was an aeronautical engineer that worked for Boeing during the Great Depression.  He fell in love with golf and applied engineering principles to the golf swing, which were meticulously described in the book.

A fantastic post on the topic of longest home run ever comes from Dr. Alan Nathan over at PopularMechanics.com titled, “What’s The Longest Possible Home Run”. Alan Nathan is a professor emeritus of physics at the University of Illinois who has spent a career tracking physics, especially as it relates to baseball. He says two primary factors guide how far a ball is going to fly: exit velocity and launch angle.  Click the PopularMechanics.com link to read more.

The SmarterEveryDay YouTube channel is a MUST subscribe.  They’re a bunch of engineering geeks that put together fascinating experiments and tests that challenge things like the longest home run ever (above) to the backwards brain bicycle.  Their videos are very entertaining, funny, and extremely informative.

What I have for you below are time marked bullet points I found interesting in the above longest home run ever SmarterEveryDay video.  Big THANK YOU to the golfing sensei, and my good friend, Lee Comeaux for the share…

  • At 1-min, 25-sec mark, he acknowledge the “Launch Angle” craze, their focus is to “…point at the fence and swing a bat as fast as we can.”
  • Safety first kids!!  These guys took many many safety precautions when running this experiment defending against batted balls (200+ mph!), broken flying wood and metal bats, or even broken shards of machine.
  • At 2-min mark, they discuss how they setup the scenario for higher probability of moving ball hitting moving bat
  • At 2-min, 45-sec mark, talked about who these guys are and 3-phase power, “…dads who love to build things.”
  • At 4-min, 40-sec mark, discussed how wood bat broke during first phase of experiment, “tension” break
  • At 5-min, 45-sec mark, 2nd phase of experiment, metal bat broke off at plastic knob (slo mo at 6:40), and flew 581-feet!!
  • At 7-min, 45-sec mark, interesting to note the imbalance of the “Mad Batter Machine” when one of two metal bats break off…think about a hitter that isn’t counter-balancing their body when swinging (e.g. breaking one-joint rule – rear ear closing in on rear shoulder during turn, OR shifting weight during stride, then continuing to go forward during turn – lunging).
  • At 10-min, 15-sec mark, fantastic frame-by-frame of bat ball collisions – ground-ball, high fly-ball, hit too early … as power was turned up, they started breaking bats … crazy how much fun these guys were having doing this.  I’m so envious!
  • At 11-min- 35-sec mark, talked about fastest ball exit speed being Giancarlo Stanton (123.9-mph), one hop double play grounder to second baseman, their pitching machine was throwing balls at 50-mph, while their high speed bat was hitting batted balls at 240-mph!  This goes to show pitching velocity isn’t the best predictor of batted ball distance (1-mph of added pitching velocity only adds 1-mph to ball exit speeds) … bat speed is (1-mph of added bat speed adds 4-mph to ball exit speeds).
  • Thought experiment … imagine if these guys angled the Mad Batter Machine in an extreme downward or upwards plane – what would happen?  I think this experiment would take them months, not days.  Think about it, a couple engineering guys, didn’t care about the ‘Launch Angle’ craze, and just angled it to where it’d hit the majority of balls … hmmmm, let that sink in 😉
  • At 12-min, 10-sec mark, history of longest home run ever tape measure shots: Mickey Mantle – 565-feet, Babe Ruth – 575-feet, and Joey Meyer – 582-feet (no immediate relation :-P)
  • At 12-min, 45-sec mark, they show the longest home run ever… (full power!!!)
Hitting Training For Baseball & Softball Swing Trainers | Hitting Performance Lab

Baseball Swing Mechanics Experiment: Squash The Bug Ineffective?

 

This post discusses youth hitting fundamentals of why squishing the bug is bad for baseball and softball players in 2022?  Learn basic how to hit the ball in a certain direction beginner swing tips experiment.  This information is great for 10-year old’s and younger.

Question: Do “Squish the Bug” Baseball Swing Mechanics Depress Bat Speed?

 

Baseball Swing Mechanics Experiment: TylerD

Here are the two test swings from my intern for the summer, redshirt college Frosh, Tyler Doerner…

Using the Zepp (Labs) Baseball app, I wanted to use the Scientific Method to analyze if the baseball swing mechanics “squishing/squashing the bug”, during the turn, increases or decreases bat speed.  The term “squishing the bug” means rotating the back foot, on the ground, during the turn.  Like you’re squishing a bug.

This can be a very sore subject, and hotly debated with a passion, in the Church of Baseball.  Surprisingly, it’s still widely taught throughout the lower levels.  Although a few images off the internet of effective swingers like Cano, Bautista, McCutchen, etc. will reveal “squishing the bug” isn’t what the best are doing.

So we wanted to test it…

My intern for the summer, redshirt college freshman Tyler Doerner did this experiment.  This post is for you Joe (you know who you are ;-)…

Background Research

One of the main objectives of whether to skip the foot, or keep it on the ground, has to do with transferring linear momentum, better known as un-weighting or forward momentum.  Check out these four HPL posts for a baseball swing mechanics background on this:

  1. Troy Tulowitzki Zepp Swing Experiment: Stride Killing Bat Speed?
  2. Ryan Braun: Common Mistakes Hitters Make #1
  3. Baseball Hitting Video: Gain Distance the Easy Way PART-1
  4. Perfect Swing Hacking with Forward Momentum (feat. Mike Trout)

Now, for you academics, CLICK HERE to watch a short 2-minute PBS video on Circus Physics and the Conservation of Linear Momentum.

So, after reading/watching the above videos and posts, we should be at a common understanding of Forward Momentum.

The next objective of “squishing the bug” versus “skipping the back foot” during the turn, boils down to allowing the body to transfer energy effectively.  This has to do with springy fascia in the body…

In Thomas Myers’s book Anatomy Trains, he talks about a cotton candy like springy material that the bones and muscles float it, and what gives muscles their shape called fascia.

Specifically in the book, he talks about the Front & Back Functional Lines.  CLICK HERE for a post I did on this, featuring Ted Williams and Matt Kemp.

In the following video, Thomas Myers explains this idea of Tensegrity, or Tension-Integrity.  There are compression and tension forces acting on the body at all times.  Within the body these two opposing forces are always searching for balance…

For a hitter, if the body moves forward, but the back foot and leg stays behind, then these forces don’t get optimally transferred from body to barrel to ball.  In other words, the backside gets “left behind”.

Hypothesis

Based on the above research, I think “squishing the bug” baseball swing mechanics will have a depressing effect on bat and hand speed because it doesn’t allow for full transfer of momentum and release of elastic energy in the springy fascia.

 

“Squish the Bug” Baseball Swing Mechanics Experiment

Baseball Swing Mechanics Experiment: Zepp Baseball App

CLICK Image to Purchase Zepp Baseball App

Equipment Used:

Setup:

  • Forward momentum was taken out of this baseball swing mechanics experiment by hitting from a 1-2 second pause at landing
  • Back two “baseball markers” were set at about 3 baseballs apart
  • The two tests in the experiment were counter-balanced.  Which consisted of eight blocks of 25-swings done in the following order ABBA BAAB.  Say “squish the bug” was letter ‘A’, and “skipping back foot’ was letter ‘B’.  200 total swings were completed in the experiment, 100 per test.  Counter-balancing helps remove the “getting tired” and “not being warmed” up factors.

 

Data Collected (Zepp Baseball App):

Squish the Bug Baseball Swing Mechanics Experiment

There were significant changes in Average Bat & Hand Speed, Time to Impact, and surprisingly, the hitter’s Attack Angle in this baseball swing mechanics experiment…

Data Analysis & Conclusion

  • +8-mph difference in average Impact Bat Speed, siding on “Skipping Back Foot”,
  • +3-mph difference in average Hand Speed Max, siding on “Skipping Back Foot”,,
  • -0.019 difference in average Time To Impact, siding on “Skipping Back Foot”, and
  • +4-degree difference in average Attack Angle, siding on “Skipping Back Foot”.

 

Notes

  • I think the “Squish the Bug” baseball swing mechanics experiment results were overwhelmingly clear.
  • Tyler did not technically keep his back foot posted to the ground during the “squish the bug” tests, so there still was an element of un-weighting going on with his backside.
  • In which case, measuring Ball Exit Speed (or how fast the ball came off the bat) may have netted interesting data to consider, compared to Impact Bat Speed.  However, with the results with the other readings of Avg. Hand Speed, Time To Impact, and Attack Angle, I think we can put the “Squish the Bug” baseball swing mechanics myth to bed 😀
  • The data and results suggests that when a hitter “leaves behind their backside”, there’s a slowing down of forward momentum, and the body naturally decelerates because the springy fascia is forced to stretch, but not release.
  • Keep in mind what I call the Goldilocks Syndrome.  The back foot can skip too far (porridge too hot), and it can also not skip at all (porridge too cold).  We want the back foot to skip just right.

The Bottom Line?

In this “Squish the Bug” baseball swing mechanics experiment, “Skipping the Back Foot” showed a notable difference in average Bat & Hand Speed, Time To Impact, and the hitters Attack Angle.  I want to encourage you to tinker and test this for yourself.  The objective of these swing experiments is to put modern hitting theory to the test, literally.  We NEED to test based on data, not feelings.  Share these results with friends.

SwingAway Trainer: Pro Baseball Traveler

SwingAway Baseball Swing Trainer: How-To Build A Swing You Can Be Proud Of…

 

This article presents a general framework to conduct 8th grade science fair project hitting experiment ideas for baseball and softball players. Sweet spot swing experiment topics should include Physics articles, books, facts, and questions.  Using the scientific method is key…

I’ve wanted to do a “how-to experiment” post for a long time.  But in the past, technology hadn’t quite caught up,

SwingAway Trainer: Pro Baseball Traveler

SwingAway Trainer: Pro Baseball Traveler

…and NOW it has!

Mark Twain once said:

“Whenever you find yourself on the side of the majority, it is time to pause and reflect.”

I want:

  • …To lay out the landscape, in this Baseball Swing Trainer post, about using the SwingAway for conducting hitting experiments,
  • …This article to empower you to take up arms with me, and turn conventional hitting wisdom on its stubborn little head, and
  • …To inspire you to use modern technology to build a swing we ALL can be proud of.

I’m embarrassed to share the following story…

I did my first hitting experiment in the sixth grade with a buddy, for a school project.

My friend and I ran an experiment to see if a wood or aluminum bat could hit the ball farther.

One day after school, we pitched to each other at the Little League diamond we played our games at.  We used two aluminum Easton baseball bats and a Ken Griffey Jr. signature Louisville Slugger woody.  One aluminum bat was 32-inches and 24-ounces, and the other was 31-inches and 23-ounces.  And I can’t remember what the woody measurements were, but it was comparable.

I think we might have hit about 50 balls with each bat (150 balls total) and get this…measured the distance with our feet! 😀 lol

Based on our results, guess which bat hit the ball the farthest?  Wood or aluminum?  The wood bat!!!  Waaa??

Well, it was only because we weren’t being very scientific with our scientific experiment.  One of the big reasons we didn’t get a good grade on the project was because we DID NOT isolate the variables

  • We threw LIVE batting practice to each other.  We should have used a baseball hitting trainer like a batting tee or SwingAway (wasn’t around at the time).
  • We both took turns hitting, and didn’t separate our individual batted ball distances.
  • We used different sized bats.
  • We measured using our own feet…I was a men’s 8/9 at the time, and my buddy was an 11. We should’ve used a rolling tape measure.
  • We only took a small data sample size. We should’ve hit 100 balls with the wood bat, and then 100 with aluminum.  AND we should have only used one of the aluminum bats (preferably the one closest in size and weight to the woody).  So 400 swings total (200 swings for me, 200 for my friend).  Then compared apples to apples.

Remember, failure is only a detour, not a dead end 😉

The good news is,

You don’t have to be a scientist to run a hitting experiment.

What follows is the exact formula I use now, to run my hitting experiments using the SwingAway baseball swing trainer.  My hopes is that you pick up arms, and join me in the fight…

 

The Definitive Guide to Conducting a Baseball Swing Trainer Experiment

Up until now, here are SIX hitting experiments I’ve run:

 

Equipment & Setup

You can read the full list at the above swing experiment links.  But here are a couple pieces of equipment that will have a drastic effect on bean counting and saving time doing the experiment itself…

BlastMotion Baseball App
Baseball Swing Trainer: Zepp Baseball App

Zepp Baseball App

Great tool for collecting data.  It’s not perfect, but all we need is an apples to apples comparison.  Unfortunately, the Zepp app DOES NOT allow you to separate experiment swings from recreational ones.  You have to delete ALL swings before doing an experiment, unless you want to do the bean counting yourself.

You’ll also need to create two email accounts with Zepp to separate the two experiment tests.  Zepp allows you to “Add a Hitter” in one account, but it doesn’t allow you to separate that data from other hitters or swings and average the data out.

SwingAway Baseball Swing Trainer

I just started using a SwingAway for my swing experiments.  I used to hit the ball off an ATEC Tuffy Batting Tee, but it was taking me 2 1/2 to 3 hours to run my experiments.  Fatigue could set in and skew the results.  Some experiments where you’re looking at ball flight (like Bent Back Knee experiment above) will most definitely need to be done off a batting tee.

Using the SwingAway baseball swing trainer took me only 1 1/2 hours!  NO need for:

  • Ball cleanup,
  • Ball setup, or
  • Waiting more than a few seconds for the ball to return to its stationary position.

This saved me a ton of time.  All you need is a 10 X 10 space to conduct your SwingAway baseball swing trainer experiment.

Baseball Swing Trainer Experiment Optimization Tips…

  • Limit Variables – The main objective of a baseball swing trainer hitting Experiment, is to isolate what you’re trying to test.  Like my sixth grade experiment from earlier, there were too many variables that we didn’t control.
  • Priming the Pump – I always start an experiment by warming up my body with a pre-practice routine, similar to this Dr. Stanley Beekman’s post.  You don’t have to do all included exercises, so pick about eight of them.  I’ll also take about 10-15 swings focusing on the specific mechanic I’m going to be testing that day.  For example, if I was testing showing the pitcher my numbers versus not, then I’d do 10-15 swings both ways, so 20-30 swings total before officially starting the experiment.  We prime the pump so nobody can see, “Well, your numbers sucked in the beginning because you weren’t warmed up.”
  • Counter-Balancing – The two tests in the experiment should be counterbalanced.  Which consisted of eight blocks of 25-swings done in the following order ABBA BAAB.  Say “showing the numbers” was letter ‘A’, and “not showing the numbers” was letter ‘B’.  200 total swings are to be completed in the experiment, 100 per test.  Counter-balancing helps remove the “getting tired” and “not being warmed” up factors.
  • More Data Points – I take at least 100 swings for both tests in the experiment, so 200 swings total (not counting warm-up swings).  So, taking the “showing numbers” as an example, I’d take 100 swings showing my numbers, and then take another 100 swings not showing my numbers.  The Zepp App is a useful technology, but isn’t super accurate.  But the more data you collect, the closer to the “real” numbers you’ll get.
  • Break the Swing Apart – If you aren’t confident that you can repeat a specific mechanic consistently for 100 swings, then break the swing apart, like I talk about in this YouTube video.  I did this in the showing the numbers experiment above.
  • Collect Ball Flight Data (optional) – for some mechanics, like testing the back leg angle during the turn experiment, it’s critical to collect ball flight data on the Zepp app.  Zepp allows you to manually input where you hit the ball after each swing.  Testing the grip on the bat would be another example.  Also, adding Ball Exit Speed readings could enhance the baseball swing trainer experiment, Bushnell Velocity Radar Gun (about $80), or Stalker Radar Gun ($500+).  ESPN’s HitTrackerOnline.com uses the latter in all MLB ballparks.  Just remember, accuracy isn’t as important as an apples to apples comparison.
  • Recovery – I usually will give my body about 30-minutes rest between the first 100 swing test and the second.  I now use supplement timing like Zach Calhoon maps out in these posts.  I sip on Zach’s “concoction” throughout the full experiment to keep my muscles fueled.  I then take Vitamin C and E capsules afterward to help with soreness.
  • Brainstorming Experiments – Don’t have any ideas on what to test?  I did the heavy lifting for you.  And by no means is this an exhaustive list of possible experiments. CLICK HERE for my brainstormed list.
  • Take Notes – make note of my “notes” in the above experiments.  Basically, the notes section are things that you noticed while doing the tests that may not be apparent to the person reading about the experiment.

 

In Conclusion…

In this baseball swing trainer post about using the SwingAway for hitting experiments, I wanted to lay out the landscape and empower you to help me take up arms.  I want to turn conventional hitting wisdom on its head, and use modern baseball swing trainer technology to build a swing we ALL can be proud of.

Let’s revisit the Mark Twain quote from earlier:

“Whenever you find yourself on the side of the majority, it is time to pause and reflect.”

I need your help and can’t fight this fight alone.  I want you to take action…

My challenge to you is let’s band together and conduct 30 Experiments in the next 30 days.  If all of us do at least one swing experiment, then we should be able to knock this goal out by July 15th.

Just post your baseball/softball hitting experiment results below in the comments section.  Reply with:

  • What experiment you ran (from the brainstorm list above)?
  • How many swings per test (i.e. 100/100), and what order did you do the test?
  • What bat did you use (length, weight, and wood/aluminum)
  • Hit off tee or Swingaway baseball swing trainer?
  • What metric changes were significant (bat speed/hand speed/bat vertical angle at impact/attack angle/ball flight/ball exit speed)?

Thanks in advance for your baseball swing trainer experiment comments!

Hitting Training For Baseball & Softball Swing Trainers | Hitting Performance Lab

Zepp Swing Experiment: Here’s a Quick Way to Fix a Flat Bat at Landing (and WHY!) 

 

 

Discover fundamental how to coach quick hands, contact, and power hitting drills, techniques for beginners, and basic youth drills for baseball and softball players in the 8, 9, 10, 11, and 12 year old age range, in 2022.  This Zepp swing experiment targeting a ‘flat’ bat at stride landing is VERY age appropriate for the ages previously mentioned.

Fundamental Baseball Question: How Does a Flat Bat at Landing Effect Bat Speed, Ball Exit Speed, & Time To Impact?

Using the Zepp (Labs) Baseball app and Pocket Radar Ball Coach, I wanted to employ the Scientific Method to analyze how a hitter’s “Flat Bat at Landing”, or toe touch,  adds or takes away from key swing performance metrics including Bat Speed at Impact, Time To Impact, Attack Angle, and Ball Exit Speeds.

Let me define what I mean by ‘Flat Barrel’ versus a ‘Vertical Barrel’…

  • A ‘Flat Barrel’ at landing is anything less than a 30-degree angle (like Cargo in the above video as an example),
  • A ‘Vertical Barrel’ at landing is anything more than a 30-degree angle.

Now that we’ve defined the parameters, let’s look at the…

Background Research

Fundamental Baseball: 'Flat Bat' Swing Experiment

Notice where the “dot” is drawn on the two static images left side, and where it’s drawn on the two dynamic images right side. Photo courtesy: GymSmartsCommunity.com

My background research is more experiential, rather than academic.

I have hitters do a mini-experiment by holding the bat in their bottom hand, laid flat (parallel to ground) over their back shoulder.  And then ask them to hold the bat, using the same hand, but vertical.  I then ask them which bat position is heavier/lighter?  Of course they say the vertical bat is lighter.  I then ask WHY?  And I get a few different answers…

What is the fundamental baseball answer?  Because we’re not adding or taking weight away from the bat by doing this…

It has to do with center of mass of the bat in relation to the hitter’s.  A ‘Flat Bat at Landing’ pushes its center of mass behind the hitter’s. A human’s center of mass is generally around the belly button.  To find the bat’s center of mass you can balance it between your thumb and forefinger.

I’ve also observed when adjusting a hitter’s ‘Flat Bat at Landing’ to a more ‘Vertical Bat at Landing’, there’s a bump in Ball Exit Speed, which I measure at the beginning (before instruction is given) and end of a hitting lesson.  My hitter’s also share they feel quicker to impact, have a little more ‘pop’, and that it’s easier getting the ball in the air.

It’s also interesting to note that I see quite a bit of early barring of the front arm when the hitter lands with a flat barrel.  I also see the hitter “wrapping the bat” around their head.  In my opinion this is a compensation to manipulate the shifted center mass of the bat from behind the hitter.

CLICK HERE to watch this fundamental baseball video on how to fix a ‘Flat Bat at Impact’.

 

Hypothesis

Fundamental Baseball Swing Experiment: Carlos Gonzalez & Cody Bellinger Illustrating Flat versus Vertical Bat at Landing

Look at the difference in bat angle at landing between Carlos Gonzalez (left) – “Flat” and Cody Bellinger (right) – “Vertical”. Just because a Big Leaguer does it doesn’t mean it’s effective or optimized. Oftentimes they succeed despite ineffective mechanics. Photos courtesy: MLB.com

In support of the Background Research above, I’m hallucinating that we’ll see a bump in Bat and Ball Exit Speeds, in addition to a reduction in Time To Impact.  I also think that we’ll see a more positive move in the barrel’s Attack Angle.

 

Flat Versus Vertical Bat at Landing Experiment

Equipment Used:

Fundamental Baseball Experiment Setup:

  • Yellow dimple ball feedback markers to keep starting footwork the same = bat length…I used two yellow dimple ball markers to make my stance setup consistent.  One was placed inside my back foot, close to the plate.  The other was placed one bat’s length ahead of the back marker.
  • Backspin tee was set one baseball’s length behind the front feedback marker, and tee height was about mid-thigh
  • We stayed as consistent as we could with keeping the ball height and depth the same for most swings.
  • I broke each swing down into a couple steps: 1) Get to landing, 2) Pause for 2-secs, and 3) Swing.  The reason for this was to control the bat either flat or vertical at landing.
  • The two tests in the swing experiment were counter-balanced.  Which consisted of eight blocks of 25-swings done in the following order ABBA BAAB.  ‘Flat Bat at Landing’ was letter ‘A’, and ‘Vertical Bat at Landing’ was letter ‘B’.  200 total swings were completed in the experiment, 100 per test.  Counter-balancing helps remove the “getting tired” and “warm up” factors.
  • The objective of ‘Front Facing Swings’ was to start the ‘belt buckle’ pointing at the pitcher, and to minimize pelvic movement.
  • Fundamental baseball Experiment Day-1 on 7/5 we completed 150 total swings (75 ‘Flat Barrel at Landing’ & 75 ‘Vertical Barrel at Landing’).  Experiment Day-2 on 7/10 we completed 50 swings (25 ‘Flat Bat at Landing’ & 25 ‘Vertical Bat at Landing’).
  • We had to break the 200 total swings into two days, with the second day coming 1 week later, because of time constraints.

Data Collected (Zepp Baseball App & Ball Exit Speed Readings):

‘Flat Bat Swings’ Days 1 & 2 side by side…

Fundamental Baseball: Swing Experiment

Flat Barrel at Landing swing averages of the averages: 76-MPH Bat Speed at Impact, 26.5-MPH Hand Speed Max, .209 Time To Impact, -32* Bat Vertical Angle at Impact, & 8.5* Attack Angle.

‘Vertical Barrel Swings’ Days 1 & 2 side by side…

Fundamental Baseball: Swing Experiment

Vertical Barrel at Landing swing averages of the averages: 76-MPH Bat Speed at Impact, 27-MPH Hand Speed Max, .206 Time To Impact, 30.5* Bat Vertical Angle at Impact, & 8.5* Attack Angle.

CLICK HERE for the Ball Exit Speed Google document.  The findings?

  •  Flat Barrel at Landing AVERAGE Ball Exit Speed = 79.01-MPH
  • Vertical Barrel at Landing AVERAGE Ball Exit Speed = 81.08-MPH
  • Difference = 2.01-MPH Ball Exit Speed bump with more Vertical Barrel at Landing

 

Data Analysis & Fundamental Baseball Conclusion

Zepp data analysis comparing the averages of averages:

  • We saw NO change to Bat Speed at Impact between the two swings,
  • We saw a 0.5-MPH boost to Hand Speed Max when holding a ‘Vertical Bat at Landing’,
  • We saw a .003 second reduction in Time To Impact when holding a ‘Vertical Bat at Landing’,
  • We saw a +1.5-degree increase to Bat Vertical Angle at Impact when holding a ‘Vertical Bat at Landing’,
  • We saw NO change to the Attack Angle between the two swings, and
  • We saw a 2.01-MPH increase in Ball Exit Speed when holding a ‘Vertical Bat at Landing’.

Based on the above Data Analysis it looks like my Hypothesis was proved right when it came to a boost in Hand Speed Max and Ball Exit Speed, and decrease in Time To Impact, but wrong when it came to Bat Speed at Impact and Attack Angle.  I think the increase in Ball Exit Speed can be attributed to the decrease in Time To Impact.

When we see ineffective movement at the Big League level, we have to understand that these high level hitters are succeeding despite ineffective movements, not because of them.

Perry Husband Bunting

Photo courtesy: Perry Husband YouTube channel

One of my readers sent me this Perry Husband video…

Interesting how he compares the impact positions of bunting to the swing.

He mentions some things in this video:

  • Bending the arms as a “shock absorber”,
  • Bent limbs are “weak”,
  • Is he promoting a straight arms at swing impact?
  • Stretching rubber bands – “Every muscle in my body is elastic”, and
  • Bat speed is not enough, and a hitter needs to couple that bat speed with controlled forward movement.

What are your thoughts on any one of the above points?  Please comment in the “Leave a Reply” section below…

Hitting Training For Baseball & Softball Swing Trainers | Hitting Performance Lab

This is Part 2 of a 3-part series on gaining power faster through nutrition:

Last post, we talked about timing your nutrition. But why? How does changing a few minutes of nutrition intake make any difference in your recovery and training? The answer revolves around your bodies hormonal response and an idea called the “Anabolic window.”

Anabolic response is a fancy word for building. When you see the word anabolic, think to build, when you see the word catabolic, think breaking down.

X-axis is time after workout

 

This graph is showing the anabolic response to nutrients after you exercise. There is a sharp anabolic response to nutrients immediately after your workout. But as you wait, your muscles are less responsive to anabolic activates and less responsive to nutrition.

 

How Hormones Change Your Training

Why is this the case? This is because of an important hormone called insulin. Insulin is released by your pancreases into your bloodstream when your body detects certain foods in your system. The most popular function of insulin is the regulation of glucose. If your bloodstream has a glucose level that is too high, then this can be toxic and lead to death. So insulin helps lower your blood sugar. Thus you stay alive. Good!

Check this out, the presence of insulin after a workout has been shown to boost recovery and increase muscle gain.

 

Studies To Help Us

There have been many studies proving the effect of insulin on protein synthesis (the creation of new muscle).  Penn State University Medical School researchers found that insulin stimulated ribosomes (cellular machinery) involved in the creation of muscle protein.

In a different study, researchers from the University of Texas Health Science Center in Galveston found that, after an insulin infusion, new muscle creation (protein synthesis) in the muscle cell increased by approximately 67 percent post workout.

I took advantage of this insulin response to glucose right after workouts. This recovery tool, aided my fastball increase from 88 mph to 95 mph in less than a year. When you take your nutrient intervention serious. Big things happen. You accomplish performance goals you never thought possible. I want this same success for you.

I teach a lot of pitchers how to train harder and recover fast (to throw harder). So I call nutrient intervention “Throw Cheese Intervention.” These same principals apply to hitters.

Here is an example of a normal insulin response to exercise without nutrient intervention:

Insulin’s Bad Reputation

Insulin promotes fat syntheses and decreases fat breakdown when your body is in a sedentary state. Over a long period of time, high insulin levels and buildup of body fat have been linked to type 2 diabetes. This is true and scary for a lot of people out there. But keep in mind. The sensitivity of your fat cells to insulin to store fat, is highly dependent on your bodies anabolic state.

The degree at which insulin promotes fat storage (bad), or carbohydrate storage, or protein syntheses (good) depends on which cells are sensitive to the insulin. Different cells (muscle cells or fat cells etc.) are sensitive to insulin based on the timing of your nutrients in regards to when your body was stressed during training.

We detail this very important, nutrition time sensitive characteristic, in the Throw Cheese Nutrient System. The timing and effectiveness of your nutrient intervention has a huge effect on your hormonal and biochemical response to workouts. An elite athlete (who is training everyday) muscle cells responds positively to insulin, especially right after your workout.

Exactly What You Should Do

Right after your workouts your muscle cells are the most sensitive to insulin and glucose. There is a 15 to 45 minute window that your body is starving for nutrient intervention. During this time you need to consume a protein/carbohydrate beverage (in a liquid form). The carbohydrate I want you to consume is sugar.

This will “open” the gates for amino acids, creatine and glucose for new muscle creation, limit muscle damage and blunt negative hormone response from training. The ratio of carbohydrates to protein is 3/1 or 4/1 carbohydrates to protein. For a post-workout supplementation, a 200 pound athlete should consume approximately 15 – 20 grams of whey protein and 50 – 60 grams of high-glycemic carbohydrates (dextrose) immediately after training.

Here is a picture of my shake after a workout:

More precise calculation of your pre-training, during training and post training nutrition is something we will lay out for you later.  So stay tuned bro and bro-ettes!

Keep in mind, carbohydrates and protein are both good by themselves. But when you add them together,  carbohydrates are complimentary to protein in training recovery and strength gains. Immediately following your workout, is the “Prime time” to get protein/carbohydrates into your system. The faster the better!

The below graph shows a large anabolic difference when nutrient intervention takes place.

From the Throw Cheese Nutrient System:

What Kind Of Sugar?

Not all sugars are a strong stimulator of insulin. Avoid products with high fructose or galactose. For example, many fruits (bananas, apples, citrus fruits ) and all vegetables (asparagus, artichoke, beans, broccoli) contain high fructose levels. They are not ideal immediately after your workout (Plus they are slower to digest).  Strong insulin driving carbohydrates include sucrose, maltodextrin and dextrose.

 

Here Is What I Use

I prefer the carbohydrate dextrose (order Dextrose Powder on Amazon). It is derived entirely from corn, making it natural, effective, and easily utilized by the body. You can scoop this into your shaker along-side your whey protein (whey protein is also very insulinogenic).

What If You Wait?

2 hours after your workout, your muscle can actually become insulin resistant. What this means is your muscle cells will not use the nutrients needed to build and repair the damage you caused during training. In other words, all the work you put into training is wasted. (what a crying shame!)

Do not waste your workouts by limiting your fuel intake. Every minute counts, literally.

Stay tuned for the next blog post, and keep working hard.

-Zach

PS: I wrote a a free course called “5 Nutrition Shortcuts To A 90+ MPH Fastball” grab your own copy —> click here

P.P.S.: Thanks for reading. Share this with a friend.

References:

Gleeson, M., Lancaster, G.I., and Bishop, N.C., “Nutritional strategies to minimize exercise induced Immuno suppression in athletes,” Canadian Journal of Applied Physiology, 26(Suppl):S23-S35, 2001.

Levenhagen, D.K., Carr, C., Carlson, M.G., et al., “Post exercise protein intake enhances

whole-body and leg protein accretion in humans,” Medicine and Science in Sports and Exercise, 34:828-837, 2002.

Ivy, J.L., Katz, A.L., Cutler, C.L., et al., “Muscle glycogen synthesis after exercise: effect of

time on carbohydrate ingestion,” Journal of Applied Physiology, 64:1480-1485, 1988.

Ivy, J.L., “Dietary strategies to promote glycogen synthesis after exercise,” Canadian Journal of Applied Physiology, 26(Suppl):S236-S245, 2001.

Suzuki, M., Doi, T., Lee, S.J., et al., “Effect of meal timing after resistance exercise on hind limb muscle mass and fat accumulation in trained rats,” Journal of Nutritional Science and Vitaminology, 45:401-409, 1999.

Disclaimer: Always consult a medical professional before taking any nutrition supplements.